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SUMMARY 

Non-linear regression involving Gaussian, modified Gaussian or Weibull func- 
tions is currently used for deconvoluting fused chromatograms. In this paper, we 
report that deconvolution of fused chromatograms is a problem in constrained non- 
linear optimization and not an unconstrained problem as assumed by previous re- 
searchers. A modified version of the generalized exponential function is shown to fit 
chromatographic peaks using the Box-Complex method for constrained optimiza- 
tion. Previously reported problems of false fits do not occur with this method. Several 
deconvolutions on real size exclusion chromatographic data are shown to demon- 
strate the power of the technique. 

INTRODUCTION 

The occurrence of fused or overlapping peaks is a problem common to all 
forms of column chromatography. In adsorption chromatography, fused peaks may 
arise due to incomplete resolution of two or more eluting species. In size-exclusion 
chromatography (SEC) macromolecules are separated by flow through porous me- 
dia. Chromatograms of most polymer samples are non-Gaussian and skewed to the 
region of small molecules (right-tailed). In addition, a polymer sample may have a 
multimodal molecular weight distribution or may contain another species that elutes 
over the same range of elution volumes in which the polymer elutes. Either case 
results in a multimodal or convoluted chromatogram consisting of two or more over- 
lapping peaks. 

Any peak in a chromatogram is characterized by several parameters. The elu- 
tion volume at the peak maximum, the peak height, and the first three moments 
about the mean and/or the origin are the most commonly used parameters in de- 
scribing a peak. When two peaks are fused, depending on the degree of overlap, some 
or all of the above parameters for either peak can be affected. Thus the overlapping 
peaks must be separated from each other before accurate estimates of any parameter 
can be made. 

The earliest attempts at separating overlapping peaks mathematically involved 
pencil and paper methods such as tangent skimming and perpendicular drop’J. Al- 
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though these methods were improved by the use of correction factor@, they remained 
highly approximate, did not correct all peak parameters and worked only if the peaks 
were only slightly overlapped. 

When computers became more accessible, several new approaches involving 
complex mathematical techniques became feasible. Non-linear regression or curve- 
fitting has been the most widely used method for deconvoluting overlapped peaks. 
This method assumes that a chromatographic peak signal (h) can be described as a 
function of the elution volume (v) and several parameters. Overlapped peaks are 
described by sums of such functions. Thus two peaks and an overlap of these peaks 
may be described as: 

Peak 1 h = gl (V, P,j; j = 1, n) (1) 
Peak 2 h = g2 (V, P2j; j = 1, n) (2) 
Overlapped peaks h = gl (K Pr,;j = 1, n) + g2 (K P2j;j = Ln) (3) 

where Pij are parameters for the peak shape function, g, and n is the total number 
of j parameters per i peak that the function g requires. A chromatogram may be 
described as a set of elution volume vers’s1(s detector signal data points. A curve-fitting 
algorithm can be used to fit eqn. 3 to the data points and the best-fit values for the 
Ptj parameters can be substituted into eqns. 1 and 2 to obtain the individual peaks. 

Several different functions have been used in the above approach. Gaussian+*, 
Pearson VII9 and LorentzianlO functions are symmetric and have been widely used. 
Although symmetric functions are simpler to handle, most chromatographic peaks 
are skewed. This is particularly true in case of SEC. Thus symmetric functions are 
inadequate and non-symmetric functions such as the exponentialfy modified Gaus- 
sian”J2 and Weibull13 have been used. 

Several curve-fitting methods, which include Fletcher PowelP4, Marquardts16, 
Newton-Raphson12, and Simplex minimization* *, have been employed to find the 
best-fit values for peak parameters. A common problem encountered with these 
methods is that false results occur because of the existence of several minima in the 
sum-of-squares error function. This often makes these methods fail. Thus, most of 
these methods are sensitive to the accuracy of the initial guesses for the function 
parameters. 

Besides curve-fitting, several other methods have been applied. Fast Fourier 
transforms, assuming Gaussian peaks, yield an approximate method for deconvo- 
lution15. Several other methods are specific to multichannel detectors16-1g. A simple 
technique involving solution of linear equations has been reportedZO but requires 
determination of a system-specific overlapping coefficient. Another method uses 
fast-scan voltametry to resolve fused peaks2 l. 

Curve-fitting as a method suffers from the handicap of assuming a peak shape 
by choosing a function for fitting.. This assumption becomes increasingly limiting as 
the function chosen becomes less and less general. A curve-fitting method that uses 
shapes of standard peaks to fit overlapped peaks has been reported14 but will ob- 
viously not work with unknown samples. Another technique that involves the solu- 
tion of a system of equations without a peak shape assumption has been reported22-2 5. 
However, this method requires a calibration for each peak component in the over- 
lapped peak. 
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In this paper we report that deconvolution of fused peaks is a problem in 
constrained non-linear optimization and not an unconstrained problem as assumed 
by previous researchers. We report the use of a modified generalized exponential 
(GEX) function for describing chromatographic peaks. This function is shown to be 
very general. Also the Weibull distribution, which has been reported to fit chro- 
matographic data and polymer distributions very well’ 3,26.2 ‘, is shown to be a special 
case of the GEX function. We use the Box-Complex method for constrained non- 
linear optimization and report that the problems with false fits do not arise with our 
constrained non-linear curve fitting method. Several typical deconvolutions on real 
SEC data are shown to demonstrate the power of the technique. 

THE GENERALIZED EXPONENTIAL FUNCTION 

The differential form of the generalized exponential (GEX) function is given 
by eqn. 4: 

acbio 
F(x) = ~ 

W4 

e -cfx(b- 1) (4) 

where a, b and c are constants. The function passes through a single maximum when 
a is greater than zero. Differentiating eqn. 4 and setting the derivative equal to zero 
yields the maximum to be: 

Substituting this into eqn. 4 gives the value of the function at the maximum: 

Fm&) = 

Dividing eqn. 4 by eqn. 6 yields: 

(6) 

(7) 

In a SEC chromatogram, there exists an elution volume (v) where the detector 
output signal (h) positively deviates from the baseline. This elution volume will be 
denoted by V,. Also the elution volume at the maximum detector output (h,,,) will 
be called V,. The variable x may be transformed to a new origin and scale by using: 

v - v, 
x=- 

d 

where d is a constant. 

(8) 
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The peak maximum occurs at V, and x has a value, x,, at this point. Using 
this condition in conjunction with eqns. 8 and 5 eliminates the constant d and: 

Using-the above value for x in eqn. 7 and replacing F(x) and F,(x) with h 
(the detector output) and h,, respectively, yield: 

Eqn. 10 is a form of the GEX function particularly suited for fitting chro- 
matographic peaks. Note that for a single peak h,, V0 and V,,, can be easily obtained 
from the chromatogram (see Fig. 1). Thus the GEX function in this form contains 
only two unknown parameters, a and b. 

Eqn. 10 can be used to show that in general a set of K overlapping peaks may 
be represented by: 

hmi Vy-‘) 
i=l 

exp{y (1 - yl’)} (11) 

where V, = 
v - voi 

Vmi - VOi 

Every peak has five parameters -Voi, Vmi. h,i, tlig bi- except for the first peak 
in which V,,, is known. Thus, in general, K overlapping peaks can be represented by 
a sum of GEX functions having (5K - 1) parameters. For a given set of overlapping 
peaks, the curve-fitting problem involves finding the set of values for these parameters 
that force eqn. 11 to best-fit the chroinatographic data. 

VO Viii 
ELUTION VOLUME (V) 

Fig. 1. Single peak showing three of the five parameters per peak required by the GEX function. 
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The GEX function is very general in nature. At b = 1, eqn. 10 describes a 
straight line with zero slope. For values of b greater than 1, the function passes 
through a maximum if a is positive and passes through a minimum if a is negative. 
If a = b, then eqn. 10 reduces to a Weibull function. For values of b greater than 1 
and positive values of a, the function can be skewed to the left or right or made 
symmetric. The kurtosis (flatness) and the standard deviation (width) of the peak 
can be adjusted to a large extent. Thus the overall generality of this function makes 
the “fixed peak shape assumption” underlying the “curve-fitting” method less lim- 
iting. 

CONSTRAINTS ON THE PARAMETERS 

Consider a case where two positive peaks overlap to yield a fused peak. A sum 
of two GEX functions with nine parameters can be used to describe such a peak and 
an equation similar to eqn. 3 can be written: 

h = gi (K vol. VnIl, hnlr al, bl) + g2 (K J702, l/m2,hn2t a2. b2) (12) 

Note that Vol is known and hence there are only four unknown parameters for the 
first peak while there are five for the second one. 

Differentiating eqn. 12 yields: 

h’ = gi + g; (13) 

Now, h’ is equal to zero at both maxima of the fused envelope (see Fig. 2). Consider 
the first maximum at (&, hk,). This is point B on Fig. 2. If the threshold of the 
second peak Vo2 lies to the right of Vml, then g; equals zero at V&r. If, however, the 
threshold of the second peak lies to the left of &, then, since Pm2 lies to the right 

,I I 

V.31 ‘inI1 vrn2 

ELUTILJN VOLUME W 

Fig. 2. Chromatogram resulting from the overlap of two positive peaks. The separation between peaks is 
exaggerated to improve clarity. The coordinates for various points are: A = (Voi, 0); B = (&, &,); D 
= (yb2. I&Z); F = (&, 0). Points B, D and F yield first guess values for the parameters V,,,t, h,,, Vml, 
h,,,~, and Vo2. Point A gives the value of the constant Vol. 
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of I%, the second peak is still increasing (or g; is positive) at I&. Substituting this 
into eqn. 13 yields the condition that g; is negative at I&. Thus the maximum of 
the first peak must lie to the left of V&l. This, along with the trivial condition that 
the maximum of any peak must be to the right of its threshold, yields: 

VOl < Vlnl < Gl (14) 

The same logic when applied to the second maximum at (I”& , Mm2 ) yields: 

In practice every chromatogram is represented as a set of elution volume vs. detector 
signal data points. At the last point in any chromatogram, the signal has returned 
to its baseline value. Let the elution volume of the last point be Vr, then the bounds 
on Vm2 may be rewritten as: 

Since both the peaks are positive in this particular case, eqn. 12 can be used 
to write: 

0 -=z h,l < h’,l (16) 

and 

0 -c h,z < Mm2 (17) 

Also, since the threshold for the second peak must lie to the left of I$,2 and 
cannot be less than Vol, 

VOl < vo, < Kn2 (18) 

Finally, as explained in the previous section, the GEX function requires a positive 
value of a and a value of b greater than 1 for a single maximum. Thus, 

al, a2 > 0 (19) 

and 

h, b2 ’ 1 (20) 

In practice, most chromatograms have been found to have values of a and b below 
25. 

Inequalities 14-20 represent constraints which must be satisfied in the process 
of finding the best-fit values for the nine parameters. In case of overlap between a 
postive and negative peak, the maxima of the two individual peaks will move towards 
each other and grow in size as compared to the maximum and minimum exhibited 
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by the fused envelope. In case of three positive peaks overlapping, the three maxima 
will decrease in size and the two outer maxima will move away from the central 
maximum as compared to the maxima exhibited by the fused envelope. 

In general, for every case of K overlapping peaks where the envelope shows K 
maxima (or minima for negative peaks), a set of constraints defining the domain of 
the fitting function can be derived using eqns. 12 and 13 in conjunction with the 
definition of the GEX function. Thus curve-fitting now becomes an exercise in con- 
strained minimization of the sum-of-squares error. 

THE FITTING ALGORITHM 

In general for a chromatogram consisting of m data points [(hr. Vi) where i 
= 1 to m] and K overlapping peaks, the curve-fitting problem may now be written 
as: 

Minimize f = i [h (at V = Vi) - ht]’ 
i=l 

where h = G (V.-P,: j = 1 to (SK - I)] 

subject to: Zj S; Pj 5 Uj: j = 1 to (5K - 1) 

In the above formulationfrepresents the sum-of-squares error, G represents the sum 
of K GEX functions, and PJ values represent the parameters which are constrained 
to vary between lower and upper bounds represented by 1, and Us, respectively. 

Any problem in constrained optimization can be approached in two broad 
ways. The problem can be converted to one involving unconstrained optimization 
through the use of penalty functions or parameter transformation28. Alternatively, 
a method capable of constrained minimization must be used. Although non-con- 
strained optimization is simpler than constrained optimization, the constrained ap- 
proach is preferred whenever feasible. Among the several powerful methods for con- 
strained optimization that are currently available, the Box-Complex method has been 
shown to compare very favorably to more complex techniques like the Rosenbrock 
or Fletcher Powell methods2Q. The Box-Complex methodJo is essentially a con- 
strained simplex minimization technique, particularly suited to optimizations involv- 
ing non-linear object functions subjected to linear inequality constraints. This method 
does not require derivatives of the object function and is not subject to scaling prob- 
lems. 

After initial attempts to use an available Marquardt algorithm with parameter 
transformations failed, the Box-Complex method was chosen for solving the prob- 
lem. A program, PEKSEP, using BASIC for a Xerox Sigma-9 computer was written 
and tested against the Marquardt algorithm using simple model problems. The pro- 
gram requires an initial feasible guess for all parameters, but we have found that the 
method is not sensitive to the correctness of the initial guess. 

A distinct advantage in using a sum of GEX functions as described by eqn. 11 
is that all parameters have physical meanings and first guesses for the parameters can 
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TABLE I 

STARTING APPROXIMATIONS FOR A CASE OF TWO POSITIVE PEAKS OVERLAPPING (SEE 
FIG. 2) 

No. Parameter Description First guess value 

V ml 
h ml 
al 
bl 
Voz 
V I%? 
h m* 
al 
bz 

Elution volume at maximum peak 1 & (point B) 
Signal at maximum peak 1 &l (point B) 
Shape parameter 3 
Shape parameter 3 
Threshold of peak 2 62 (point F) 
Elution volume at maximum peak 2 vm2 
Signal at maximum peak 2 &II., 
Shape parameter 3 
Shape parameter 3 

be easily made using the shape of the fused envelope. Table I shows the first guess 
values for the case of two positive peaks overlapping (Fig. 2). It has been our ex- 
perience that a first guess value of 3 for both the shape parameters a and b is ac- 
ceptable for all the SEC data analyzed so far. 

The program can optionally weight data from a raw data file during the cal- 
culation of the sum-of-squares error. We find that in most cases weighting the data, 
to ensure that both sides of a peak have an equal number of data points, helps in 
achieving good fits. To illustrate the weighting technique, consider Fig. 2. If the ratio 
of the number of points in section AB to those in section BC is w, the points in 
section BC are weighted by a factor, w, while those in AB are assigned a weight of 
1. In the absence of such weights, the leading edge of the first peak and the trailing 
edge of the second tend to dominate the choice of shape factors for the peaks. 

After the best-fit values of the parameters are obtained, the program calculates 
a Pearson-type goodness-of-fit value. The output at the mainframe computer consists 
of the best parameter values, the sum-of-squares error, and the goodness-of-fit value. 

SEC _ packed _ date&r _ debctcr 

pump column 
J 

Fig. 3. Schematic diagram of our SEC system. Solid lines represent solvent flow; broken lines represent 
information flow. 
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Fig. 4. De-convolution of data tile 7072B (see Table II) using program PEKSEP. Key: + = data points; 
solid line = fitted function (sum of two GEX functions); broken lines = individual deconvoluted peaks. 

SAMPLE RUNS OF PROGRAM PEKSEP 

Fig. 3 shows a schematic diagram of our SEC system. Details of the interfacing 
and the data acquisition and analysis software have been reported previou~ly~~. A 
Hewlett-Packard Model 85A microcomputer is interfaced to one or more detector(s) 
and an electronic balance. It has been our experience that elution volume counters 
are unreliable and, hence, we use elution mass (signals from the on-line balance) as 
the x coordinate in our chromatograms. Typically, a SEC chromatogram is stored 
on magnetic tape as a set of 50-200 data points. If a chromatogram contains fused 
peaks, the corresponding data file is corrected for baseline drift and then uploaded 
to a Xerox Sigma-9 mainframe computer. After deconvolution using program PEK- 

Fig. 5. Deconvolution of data file 7122B (see Table II) using program PEKSEP. Key: + = data points; 
solid line = fitted function (sum of two GEX functions); broken line = individual deconvoluted peaks. 
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r 

380 Aakl sakl 68.8 780 

ELUTION MASS (Me> 

Fig. 6. Deconvolution of data file 7122C (see Table II) using program PEKSEP. Key: + = data points; 
solid line = fined function (sum of two GEX functions); broken line = individual deconvoluted peaks. 

SEP, the deconvoluted peaks can be downloaded back to the HP-85A microcomputer 
for plotting and/or further analysis if needed. 

Figs. 4-7 show typical deconvolutions accomplished using program PEKSEP. 
All four chromatograms were previously unanalyzed files from our data library. The 
data was collected on columns of rigid packing materials using various aqueous and 
organic solvents. Table II summarizes the conditions under which individual data 
files were collected. 

DISCUSSION 

Figs. 4-6 show chromatograms of polystyrene obtained with tetrahydrofuran 

B 

I- 
IIIIIII1IlILIIILlLllllll 

33.0 48.0 5a.B a.8 70. e 

ELUTION MASS (Me) 

Fig. 7. Deconvolution of data iile 7283B (see Table II) using program PEKSEP. Key: + = data points; 
solid line = fitted function (sum of two GEX functions); broken line = individual deconvoluted peaks. 
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TABLE II 

EXPERIMENTAL CONDITIONS FOR THE SAMPLE CHROMATOGRAMS SHOWN IN FIGS. 
4-7 

Figure Data file Colwnn packing Mobile phase Smpie 
No. No. 

4 7072B Controlled porous THF Polystyrene (MW = 422,000) 
glass dissolved in THF 

5 7122B Same as fde 7072B THF Same as tile 7072B 
6 7122C Same as file 7072B THF Polystyrene (MW = 1.2 . 106) 

dissolved in THF 
7 7283B Glyceryl-coated Deionized Dextran T-2000 in 

controlled porous water deionized water 
glass 

(THF) as the mobile phase in a column packed with controlled porous glass. The 
polystyrene samples were dissolved in THF before being injected on the column. 
Investigations to explain the occurrence of fused peaks proved that the THF used as 
a solvent for the samples had been contaminated with a UV-active spcies. In keeping 
with this observation, the second peak in the pair of overlapped peaks must, like a 
solvent peak, occur at the total elution volume of the column and be symmetric. The 
total elution volume of the column under consideration was 55.5 ml. Figs. 4-6 show 
that the deconvolution program has predicted that the second peaks are symmetrical 
with a maximum at 49.2 g, 49.9 g and 49.6 g (55.4 ml, 56.2 ml and 55.9 ml), respec- 
tively. Figs. 4 and 5 are chromatograms of a polystyrene of molecular weight 422,000 
while Fig. 6 corresponds to polystyrene of molecular weight 1.2 - 106. The desirable 
concentration of an SEC sample is inversely proportional to the molecular weight of 
the polymer being analyzed. Thus the chromatogram in Fig. 6 must show a bigger 
solvent peak when compared to Figs. 4 and 5. Deconvolution shows that the solvent 
peak corresponds to 20%, 16% and 40% of the total area under the fused peaks for 
Figs. 4, 5 and 6 respectively. Therefore, the deconvolution technique has yielded 
results consistent with predictions based on experimental data. 

Fig. 7 shows a chromatogram of Dextran T-2000 (Pharmacia, Piscataway, NJ, 
U.S.A.) with water as the mobile phase in a controlled porous glass packed column. 
High-molecular-weight dextrans have been reported to give multimodal chromato- 
grams with water as the mobile phase. Published data shows that the second peak 
for Dextran T-2000 has a maximum near the elution volume for T-5003*. On our 
system T-500 elutes at 43.0 ml. Deconvolution of the T-2000 chromatogram predicts 
a second peak at 43.6 g (43.6 ml). Once again the results from the deconvolution 
technique agree very well with experimental data. 

Fig. 7 represents a set of very badly fused peaks. The fact that program PEK- 
SEP successfully deconvolutes peaks even under such extreme conditions is indicative 
of the power of the technique. Deconvoluting chromatograms with positive and nega- 
tive peaks overlapping involves a simple modification to the technique. The only 
change required is that the peaks are represented as the difference of GEX functions 
instead of a sum as in the case of all positive peaks. Fused positive and negative 
peaks usually occur with refractive index detectors in cases where the polymer has 
a refractive index higher than that of the mobile phase, while the solvent used to 
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TL_i I 1 L I 1 llllllllLllllLl 
30.0 40.0 sad 60.0 78. e 

ELUTION MASS (Me) 
Fig. 8. Deconvolution of file 7072B using program PEKSEP and a sum to two Weibull functions. Key: 
+ = data points; solid line = fitted function. 

make up the sample solution has a refractive index lower than the mobile phase. Our 
data library has very few chromatograms of this type and all contain peaks that are 
only marginally overlapped. Consequently, deconvolution of the chromatograms is 
a trivial test of program PEKSEP. 

Fig. 8 shows a deconvolution of the same data file as shown in Fig. 4, but a 
sum of Weibull functions is used to fit the data instead of GEX functions. The fit in 
Fig. 8 has a standard deviation of 2.81 - lo-’ and a goodness-of-fit value of 6.6 (zero 
being a perfect fit). In contrast, the At in Fig. 4 has a standard deviation of 7.99 . 
10s3 and a goodness-of-fit value of 1.8. Thus, the GEX function fits the data better 
than the Weibull functions. In our experience such a case is a rule rather than an 

ELUTION MASS (Me) 

Fig. 9. Deconvolution of tie 7072B using unconstrained (Marguardt) minimization with a sum of two 
Weibull functions. Key: + = data points; solid line = fitted function. 
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exception. The GEX function fits the tail of a SEC chromatogram much better than 
a Weibull function. 

Fig. 9 shows a deconvolution using unconstrained minimization. A Marquardt 
routine with Weibull functions was used to fit the same data as in Figs. 4 and 8. The 
standard deviation and the goodness-of-fit value for this fit are 3.2 . 10m2 and 7.6, 
respectively. Note that although these values are comparable to those for the fit in 
Fig. 8, the parameter values obtained violate real constraints. As shown in an earlier 
section, in the case of two positive peaks on deconvolution, the individual maxima 
must be lower than the maxima shown by the fused envelope. This is a classic example 
of a false fit obtained using unconstrained minimization. Such fits are avoided by our 
technique. 

A typical deconvolution using program PEKSEP takes cu. 10-15 minutes on 
a Xerox Sigma-9 computer. Although this is an acceptable run-time, it is longer than 
it needs to be. Writing the program in BASIC initially was necessary to ensure com- 
patability with both the mainframe and the 85A microcomputer. We are in the pro- 
cess of translating the program into FORTRAN and this will result in substantial 
reduction in the run-time. 

CONCLUSION 

In this paper, we have proved that deconvolution of fused chromatograms is 
a problem in constrained minimization. The GEX function has been shown to fit 
chromatograms accurately. The Weibull function has been shown to be a special case 
of the GEX function. Several sample deconvolutions have been shown to prove that 
the technique yields consistent results and does not result in false fits. 

NOMENCLATURE 

; 
d 
g 
h 

hm 
i 

j 
K 
1 
m 
n 

pu 
u 

V 
VI 
VIII 
vo 
x 

GEX shape parameter 
GEX shape parameter 
scaling factor 
peak shape function 
detector signal 
detector signal at peak maximum 
subscript denoting peak number 
subscript denoting parameter number 
number of peaks 
lower bound for a parameter 
number of data points 
number of parameters 
function parameters 
upper bound for a parameter 
elution volume 
elution volume at which the detector signal returns to the baseline 
elution volume at maximum detector signal 
elution volume at first significant detector signal deviation from the baseline 
independent variable in the GEX function 
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x max value of x at function maximum 
* superscript denoting first guess parameter values 

Note: second subscript denotes peak number 
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